A State-of-Charge and Capacity Estimation Algorithm for Lithium-ion Battery Pack Utilizing Filtered Terminal Voltage

نویسندگان

  • Chang Yoon Chun
  • Sung Hyun Yoon
  • B. H. Cho
  • Jonghoon Kim
چکیده

In electric vehicle (EV) and hybrid electric vehicle (HEV) application, accurate information of state-ofcharge (SOC) and capacity of each cell are required for elaborate SOC/capacity estimation algorithm of the battery pack. However, the measurement of the states of all cells using sophisticated algorithms increases the computation time beyond practicality, because the computation time required for the SOC/capacity estimation of the battery pack is directly affected by the number of unit cells. In this work, a simple SOC and capacity estimation algorithm for Li-ion battery pack is newly proposed by using filtered terminal voltage. The SOC estimation algorithm using filtered terminal voltage extracts an estimated current information from the terminal voltage of the battery pack through equivalent-circuit model (ECM)-based filters without sensing the current. Consequently, it drastically reduces computational steps for the SOC estimation algorithm. With the fact that all the current flowing through the series-connected cells in pack are identical, the estimated current value of each cell should be identical. As a result, it can be known that this algorithm enables us to obtain the relative proportion of SOC/capacity information of each cells and battery pack with minimal complexity increase. To validate the performance of the proposed approach, a scaled-down HEV profile is used for a pack consists of twelve 18650 series-connected Li-ion batteries (12S1P). The experimental results verify the performance of the proposed battery pack SOC estimation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer

In order to safely and efficiently use the power as well as to extend the lifetime of the traction battery pack, accurate estimation of State of Charge (SoC) is very important and necessary. This paper presents an adaptive observer-based technique for estimating SoC of a lithium-ion battery pack used in an electric vehicle (EV). The RC equivalent circuit model in ADVISOR is applied to simulate ...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

Improved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath

Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...

متن کامل

A Novel Active Online State of Charge Based Balancing Approach for Lithium-Ion Battery Packs during Fast Charging Process in Electric Vehicles

Non-uniformity of Lithium-ion cells in a battery pack is inevitable and has become the bottleneck to the pack capacity, especially in the fast charging process. Therefore, a balancing approach is essentially required. This paper proposes an active online cell balancing approach in a tfast charging process using the state of charge (SOC) as balancing criterion. The goal of this approach is to co...

متن کامل

Numerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle

Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015